GBRDs with block size 3 over odd order groups and groups of orders divisible by 2 but not 4
نویسندگان
چکیده
Well-known necessary conditions for the existence of a generalized Bhaskar Rao design, GBRD(v, 3, λ;G) with v ≥ 4 are: (i) λ ≡ 0 (mod |G|), (ii) λ(v − 1) ≡ 0 (mod 2), (iii) λv(v − 1) ≡ 0 (mod 3), (iv ) if |G| ≡ 0 (mod 2) then λv(v − 1) ≡ 0 (mod 8). In this paper we show that these conditions are sufficient whenever (i) the group G has odd order or (ii) the order is of the form 2q for q = 3 or q an odd number which is not a multiple of 3.
منابع مشابه
Generalised Bhaskar Rao designs with elements from cyclic groups of even order
A necessary condition is given for the existence of some Generalised Bhaskar Rao designs (GBRDs) with odd block size over cyclic groups of even order. Some constructions are given for GBRDs over cyclic groups of even order with block size 3 and with block size 4. AMS Subject Classification: 05B99 J( ey words and phrases: Balanced Incomplete Block Designs; Generalised Bhaskar Rao Designs
متن کاملGBRDs with Block Size Three over 2-Groups, Semi-Dihedral Groups and Nilpotent Groups
There are well known necessary conditions for the existence of a generalized Bhaskar Rao design over a group G, with block size k = 3. We prove that they are sufficient for nilpotent groups G of even order, and in particular for 2-groups. In addition, we prove that they are sufficient for semi-dihedral groups.
متن کاملOdd and even group divisible designs with two groups and block size four
We show the necessary conditions are su6cient for the existence of GDD(n; 2; 4; 1, 2) with two groups and block size four in which every block intersects each group exactly twice (even GDD’s) or in which every block intersects each group in one or three points (odd GDD’s). We give a construction for near 3-resolvable triple systems TS(n; 3; 6) for every n¿ 4, and these are used to provide const...
متن کاملA Family of Group Divisible Designs of Block Size Four and Three Groups With l1=2 and l2=1 Using MOLS
We give a construction for a new family of Group Divisible Designs (6s+ 2, 3, 4; 1, 2) using Mutually Orthogonal Latin Squares for all positive integers s. Consequently, we have proved that the necessary conditions are sufficient for the existence of GDD’s of block size four with three groups, λ1=2 and λ2=1.
متن کاملBhaskar Rao designs and the groups of order 12
We complete the solution of the existence problem for generalized Bhaskar Rao designs of block size 3 over groups of order 12. In particular we prove that if G is a group of order 12 which is cyclic or dicyclic, then a generalized Bhaskar Rao design, GBRD(v, 3, λ = 12t;G) exists for all v ≥ 3 when t is even and for all v ≥ 4 when t is odd.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Australasian J. Combinatorics
دوره 52 شماره
صفحات -
تاریخ انتشار 2012